s

Bibliography

  • Alexander M. Laptev, Jürgen Hennicke, Robert Ihl, "Influence of CFRC insert on spark plasma sintering process investigated by experiment and finite element modeling" in the magazine "Metals" A special issue of Metals (ISSN 2075-4701) 2021.
  • J. Hennicke, “Hybrid Sintering - a New Trend for Innovative Material Solutions,” in Ceramitec Forum, 2018.
  • E. Kuznetsova, P. Peretyagin, A. Smirnov, W. Solis, and R. Torrecillas, “Near-Net Shapes Al2O3–SiCw Ceramic Nanocomposites Produced by Hybrid Spark Plasma Sintering,” in Proceedings of the Scientific-Practical Conference “Research and Development - 2016,” Cham: Springer International Publishing, 2018, pp. 397–404.
  • V. Tyrpekl et al., “On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x,” Sci. Rep., vol. 7, no. April, p. 46625, 2017.
  • N. Ray et al., “Novel processing of Ag-WC electrical contact materials using spark plasma sintering,” Mater. Des., vol. 121, no. May, pp. 262–271, 2017.
  • S. Diouf, M. O. Durowoju, M. B. Shongwe, and P. A. Olubambi, “Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering,” Leonardo Electron. J. Pract. Technol., vol. 30, no. June, pp. 269–286, 2017.
  • T. Kaden et al., “Silicon Powder Based Ingots and Substrates, Processed by Spark Plasma Sintering,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, p. .
  • J. Hennicke, T. Kessel, J. Pötschke, and A. Vornberger, “Rate Controlled Sintering Of Binderless Tungsten Carbide,” in EuroPM, 2017, pp. 1–6.
  • A. Y. Achenani, M. Saâdaoui, A. Cheddadi, and G. Fantozzi, “Modélisation du procédé de frittage flash: Homogénéisation de la température,” in 4ème Édition des Journées Scientifiques Franco-Maghrébines, 2017.
  • J. Hennicke, T. Kessel, and J. Raethel, “Combining Flash Sintering / Sinterforging with Hybrid FAST/SPS Technology for Oxide and Non-Oxide Materials,” in ICACC, 2016, pp. 1–6.
  • J. Hennicke, T. Kessel, and J. Raethel, “Enhancements on FAST Sintering Systems Promote Transfer from the Lab to Industrial Applications,” in ICACC, 2016, pp. 1–10.
  • J. Laszkiewicz-Łukasik, L. Jawroska, P. Putyra, P. Klimczyk, and G. Garzeł, “The influence of SPS heating rates on the synthesis reaction of tantalum diboride,” Boletín la Soc. Española Cerámica y Vidr., pp. 1–10, 2016.
  • J. Hennicke and T. Kessel, “Benefits of Short-Time Sintering for Cost-Efficient Production and Material Development,” 2016.
  • R. Licheri, C. Musa, R. Orrù, G. Cao, D. Sciti, and L. Silvestroni, “Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering,” J. Alloys Compd., vol. 663, pp. 351–359, 2016.
  • J. Gonzalez-Julian et al., “Effect of Internal Current Flow during the Sintering of Zirconium Diboride by Field Assisted Sintering Technology,” J. Am. Ceram. Soc., vol. 99, no. 1, pp. 35–42, 2016.
  • R. Stadelmann et al., “Mechanical properties and residual stresses in ZrB2-SiC spark plasma sintered ceramic composites,” J. Eur. Ceram. Soc., vol. 36, no. 7, pp. 1527–1537, 2016.
  • J. Hennicke, T. Kessel, and J. Raethel, “New FAST Consolidation Methods on the Way ‘ from Lab to Fab ,’” in ICC, 2016.
  • D. Paraskevas, S. Dadbakhsh, J. Vleugels, K. Vanmeensel, W. Dewulf, and J. R. Duflou, “Solid state recycling of pure Mg and AZ31 Mg machining chips via spark plasma sintering,” Mater. Des., no. July, 2016.
  • S. Grasso et al., “Flash Spark Plasma Sintering (FSPS) of alpha and beta SiC,” J. Am. Ceram. Soc., vol. 99, no. 5, pp. 1534–1543, 2016.
  • T. Kessel and J. Hennicke, “Sintering of High Quality Large Area Tiles from Difficult to Sinter Powder by Hybrid-FAST/SPS and its Development to an Efficient Industrial Production Process,” in Powdermet, 2016.
  • M. B. Shongwe, S. Diouf, M. O. Durowoju, P. A. Olubambi, M. M. Ramakokovhu, and B. A. Obadele, “A comparative study of spark plasma sintering and hybrid spark plasma sintering of 93W-4.9Ni-2.1Fe heavy alloy,” Int. J. Refract. Met. Hard Mater., vol. 55, no. April, pp. 16–23, 2016.
  • F. Vogeler, B. Lauwers, and E. Ferraris, “Analysis of Wire-EDM Finishing Cuts on Large Scale ZrO2-TiN Hybrid Spark Plasma Sintered Blanks,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 268–273, 2016.
  • J. Hennicke, “Progress on Fast Sintering Technology Boosts Transfer from Lab to Industry,” in EuroPM, 2015.
  • T. Saunders, S. Grasso, and M. J. Reece, “Plasma formation during electric discharge (50V) through conductive powder compacts,” J. Eur. Ceram. Soc., vol. 35, no. 3, pp. 871–877, Mar. 2015.
  • D. I. Yushin, A. V. Smirnov, N. W. Solis Pinargote, P. Y. Peretyagin, and R. Torrecillas San Millan, “Modeling Process of Spark Plasma Sintering of Powder Materials by Finite Element Method,” Mater. Sci. Forum, vol. 834, no. November 2015, pp. 41–50, 2015.
  • D. Giuntini, J. Raethel, M. Herrmann, A. Michaelis, and E. A. Olevsky, “Advancement of Tooling for Spark Plasma Sintering,” J. Am. Ceram. Soc., vol. 98, no. 11, pp. 3529–3537, Nov. 2015.
  • J. Hennicke, T. Kessel, and J. Lichtscheindl, “From Prototypes to Production-Capable Sintering Technology,” CFI Ceram. Forum Int., vol. 95, no. 10–11, pp. E1–E3, 2015.
  • F. Al Mansour, N. Karpukhina, S. Grasso, R. M. Wilson, M. J. Reece, and M. J. Cattell, “The effect of spark plasma sintering on lithium disilicate glass-ceramics,” Dent. Mater., 2015.
  • J. Räthel, J. Hennicke, and M. Herrmann, “Potential Applications of Hybrid-Heated FAST / SPS Technology,” CFI Ceram. Forum Int., vol. 92, no. 9, pp. 1–3, 2015.
  • O. Y. Sorokin, M. L. Vaganova, S. S. Solntsev, and I. V. Osin, “Joining of silicon carbide ceramic by hybrid spark plasma sintering,” Russ. J. Appl. Chem., vol. 88, no. 5, pp. 839–845, 2015.
  • D. V. Grashchenkov, O. Y. Sorokin, Y. E. Lebedeva, and M. L. Vaganova, “Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering,” Russ. J. Appl. Chem., vol. 88, no. 3, pp. 386–393, 2015.
  • D. I. Yushin, A. V. Smirnov, N. W. Solis Pinargote, P. Y. Peretyagin, and R. Torrecillas San Millan, “Modeling Process of Spark Plasma Sintering of Powder Materials by Finite Element Method,” Mater. Sci. Forum, vol. 834, no. November 2015, pp. 41–50, 2015.
  • A. V. Smirnov, D. I. Yushin, I. A. Zverev, A. R. Maslov, and R. Torrecillas, “Modeling of hybrid method as combined spark plasma sintering and hot pressing physical processes,” Mech. Ind., vol. 16, no. 7, p. 712, 2015.
  • S. Ran, H. Sun, K. Vanmeensel, S. Huang, and J. Vleugels, “Influence of ZrH2 addition on pulsed electric current sintered ZrB2-SiC composites,” Scr. Mater., vol. 77, pp. 41–44, 2014.
  • S. Grasso, T. Saunders, H. Porwal, and M. Reece, “Ultra-high temperature spark plasma sintering of ??-SiC,” Ceram. Int., vol. 41, no. 1, pp. 225–230, 2014.
  • R. Ritasalo, M. Antonov, R. Veinthal, and S.-P. Hannula, “Comparison of the wear and frictional properties of Cu matrix composites prepared by pulsed electric current sintering,” Proc. Est. Acad. Sci., vol. 63, no. 1, pp. 62–74, 2014.
  • M. A. Lagos, I. Agote, J. M. San Juan, and J. Hennicke, “Fabrication of TiAl alloys by alternative powder methods,” TMS Annu. Meet., vol. 2014–Febru, pp. 77–82, 2014.
  • O. Guillon et al., “Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments,” Advanced Engineering Materials, vol. 16, no. 7. Wiley-VCH Verlag, pp. 830–849, 2014.
  • J. Raethel, J. Hennicke, Y. Dyatlova, M. Herrmann, and V. Rumyantsev, “New Developments of FAST/SPS Tool Materials,” Adv. Sci. Technol., vol. 88, pp. 37–42, 2014.
  • O. Y. Sorokin, S. S. Solntsev, S. A. Evdokimov, and I. V. Osin, “Hybrid spark plasma sintering method: principle, posiibilities, future prospects,” «Aviation Mater. Technol., vol. 0, no. s6, pp. 11–16, 2014.
  • H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouh??, and M. J. Reece, “Graphene reinforced alumina nano-composites,” Carbon N. Y., vol. 64, pp. 359–369, 2013.
  • G. Stokkan, A. Johanson, E.-J. E. J. Øvrelid, A. Ciftja, J. Hennicke, and A. Ulyashin, “Sintered Low Resistivity Substrates for Hybrid Solar Cells,” doi.org, no. 28, p. , Nov. 2013.
  • M. Suarez et al., “Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials,” in Sintering Applications, InTech, 2013, pp. 1–25.
  • A. Centeno et al., “Graphene for tough and electroconductive alumina ceramics,” J. Eur. Ceram. Soc., vol. 33, no. 15–16, pp. 3201–3210, 2013.
  • N. Roussel et al., “Highly dense, transparent ??- Al2 O3 ceramics from ultrafine nanoparticles via a standard sps sintering,” J. Am. Ceram. Soc., vol. 96, no. 4, pp. 1039–1042, 2013.
  • S. Grasso, H. Yoshida, H. Porwal, Y. Sakka, and M. Reece, “Highly transparent alpha-alumina obtained by low cost high pressure SPS,” Ceram. Int., vol. 39, no. 3, pp. 3243–3248, 2013.
  • S. Ran, S. G. Huang, O. Van der Biest, and J. Vleugels, “High-strength ZrB2-based ceramics prepared by reactive pulsed electric current sintering of ZrB2–ZrH2 powders,” J. Eur. Ceram. Soc., vol. 32, no. 10, pp. 2537–2543, Aug. 2012.
  • N. Hindawi Publishing Corporation. et al., Journal of nanomaterials., vol. 2012. Hindawi, 2012.
  • N. Saheb et al., “Spark plasma sintering of metals and metal matrix nanocomposites: A review,” J. Nanomater., vol. 2012, 2012.
  • S. G. Huang, K. Vanmeensel, O. Van Der Biest, and J. Vleugels, “In situ synthesis and densification of submicrometer-grained B 4 C – TiB 2 composites by pulsed electric current sintering,” J. Eur. Ceram. Soc., vol. 31, no. 4, pp. 637–644, 2011.
  • J. Langer, M. J. Hoffmann, and O. Guillon, “Electric field-assisted sintering in comparison with the hot pressing of yttria-stabilized zirconia,” J. Am. Ceram. Soc., vol. 94, no. 1, pp. 24–31, 2011.
  • R. Nicula, K. Ishizaki, M. Stir, Z. Shen, and S. Vaucher, “Rapid synthesis and densification of single-phase Al–Cu–Fe quasicrystals by spark plasma sintering or microwave heating,” Philos. Mag., vol. 91, no. 19–21, pp. 2450–2457, Jul. 2011.
  • S. Grasso, C. Hu, G. Maizza, B. N. Kim, and Y. Sakka, “Effects of pressure application method on transparency of spark plasma sintered alumina,” J. Am. Ceram. Soc., vol. 94, no. 5, pp. 1405–1409, 2011.
  • J. Langer, M. J. Hoffmann, and O. Guillon, “Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: A comparative study,” J. Am. Ceram. Soc., vol. 94, no. 8, pp. 2344–2353, 2011.
  • A. Konschak, R. Schulte, J. Hennicke, H. U. Kessel, and W. Krenkel, “Fast Siliconization of C/C-Preforms via LSI,” in High Temperature Ceramic Materials and Composites, AVISO, 2010, pp. 113–118.
  • S. Huang, K. Vanmeensel, O. Van der Biest, and J. Vleugels, “Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites,” Mater. Sci. Eng. A, vol. 527, no. 3, pp. 584–589, 2010.
  • J. Vleugels et al., “Pulsed Electric Current Sintering of Electrical Discharge Machinable Ceramics,” Adv. Sci. Technol., vol. 62, pp. 175–184, 2010.
  • S. Ran, O. Van der Biest, and J. Vleugels, “ZrB2–SiC composites prepared by reactive pulsed electric current sintering,” J. Eur. Ceram. Soc., vol. 30, no. 12, pp. 2633–2642, 2010.
  • A. K. Swarnakar, S. G. Huang, O. Van der Biest, and J. Vleugels, “Ultrafine Al2O3-B4C composites consolidated by pulsed electric current sintering,” J. Alloys Compd., vol. 499, no. 2, pp. 200–205, 2010.
  • J. Räthel, M. Herrmann, and W. Beckert, “Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST),” J. Eur. Ceram. Soc., vol. 29, no. 8, pp. 1419–1425, May 2009.
  • R. Nicula, M. Stir, F. Turquier, and E. Burkel, “Single-phase bulk Al–Cu–Fe quasicrystals by field-assisted sintering,” Mater. Sci. Eng. A, vol. 475, no. 1–2, pp. 113–116, Feb. 2008.
  • K. Vanmeensel, B. Neirinck, S. Huang, S. Salehi, O. Van der Biest, and J. Vleugels, “The effect of the electrical properties on the pulsed electric current sintering behavior of ZrO2 based ceramic composites,” Adv. Process. Manuf. Technol. Struct. Multifunct. Mater., vol. 28, no. 7, pp. 67–77, 2008.
  • K. Vanmeensel et al., “Pulsed electric current sintering of electrically conductive ceramics,” J. Mater. Sci., vol. 43, no. 19, pp. 6435–6440, 2008.
  • K. Bonny et al., “Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites,” J. Mater. Process. Technol., vol. 208, no. 1–3, pp. 423–430, 2008.
  • S. G. Huang, K. Vanmeensel, L. Li, O. Van der Biest, and J. Vleugels, “Influence of starting powder on the microstructure of WC-Co hardmetals obtained by spark plasma sintering,” Mater. Sci. Eng. A, vol. 475, no. 1–2, pp. 87–91, 2008.
  • S. G. Huang, K. Vanmeensel, O. Van der Biest, and J. Vleugels, “Binderless WC and WC-VC materials obtained by pulsed electric current sintering,” Int. J. Refract. Met. Hard Mater., vol. 26, no. 1, pp. 41–47, 2008.
  • R. Nicula, V. D. D. Cojocaru, M. Stir, J. Hennicke, and E. Burkel, “High-energy ball-milling synthesis and densification of Fe-Co alloy nanopowders by field-activated sintering (FAST),” J. Alloys Compd., vol. 434–435, no. SPEC. ISS., pp. 362–366, May 2007.
  • Z. Guo, G. Blugan, R. Kirchner, M. Reece, T. Graule, and J. Kuebler, “Microstructure and electrical properties of Si3N4–TiN composites sintered by hot pressing and spark plasma sintering,” Ceram. Int., vol. 33, no. 7, pp. 1223–1229, Sep. 2007.
  • M. Herrmann, J. Räthel, J. Hennicke, M. Nürnberger, S. Heicke, and T. Müller, “Entwicklung langzeitstabiler direkt beheizter Verdampferschiffchen,” in WING Konferenz in Berlin, 22.-24.10.07, 2007.
  • H. U. Kessel and J. Hennicke, “Aspects Concerning the Super-fast Sintering of Powder Metallic and Ceramic Materials,” Interceram, vol. 56, no. 3, pp. 163–166, 2007.
  • K. Vanmeensel et al., “Field Assisted Sintering of Cubic Boron Nitride Dispersed Cemented Carbide (CDCC) Composites,” in EuroPM, 2006, pp. 1–8.
  • H. U. Kessel and J. Hennicke, “Feldaktiviertes Sintern (FAST): ein neues Verfahren zur Herstellung keramischer Nanowerkstoffe,” in FORTSCHRITTSBERICHTE- DEUTSCHEN KERAMISCHEN GESELLSCHAFT; 20, 1, 2006, pp. 170–183.
  • K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van der Biest, “Modelling of the temperature distribution during field assisted sintering,” Acta Mater., vol. 53, no. 16, pp. 4379–4388, Sep. 2005.
  • K. Vanmeensel et al., “Microstructure and Mechanical Properties of Spark Plasma Sintered ZrO2-Al2O3-TiC0.5N0.5 Nanocomposites,” Solid State Phenom., vol. 106, pp. 153–160, 2005.
1. Consolidation and characterisation of field-assisted sintered and hot pressed rapidly solidified hypereutectic Al-Si-Fe-X alloy, K.Y.Sastry, L. Froyen, J. Vleugels, O. Van der Biest, R. Schattevoy and K. Hummert, NMD-ATM 2004, 42nd National Metallurgist's Day, 58th Annual Technical Meeting 2004, November 17-19, 2004, The Indian Institute of Metals, Trivandrum, India p.312-313
2. Field Assisted Sintering Technology ("FAST") for the consolidation of innovative materials, J. Hennicke, H.U. Kessel, cfi/Ber.DKG 81 [11] (2004) E14-E16.
3. Mechanical milling and field assisted sintering consolidation of nanocrystalline AI-Si-Fe-X alloy powder, K. Y. Sastry, L. Froyen, J. Vleugels, O. Van der Biest, R. Schattevoy and J. Hennicke, Reviews on Advanced Materials Science 8 (2004) p 27-32
4. Microstructure and Mechanical properties of Spark Plasma sintered ZrO2-Al2O3-TiC0.5N0.5 composites, K. Vanmeensel, S.Y. Kandukuri, J. Hennicke, G. Anné D. Jiang, A. Laptev, J. Vleugels and O. Van der Biest, EMRS 2004, Poland
5. Densification of nanocrystalline Ti(C,N) powders with nickel aluminide binder phases: Field Assisted Sintering (FAST) vs. Glass Encapsulated HIP, M. Alvarez, J.M. Sánchez, J. Etxeberria, L. Bourgeois, G. Barbier and J. Hennicke,. Proc. of 16th International Plansee Seminar 2005, Eds. G. Kneringer, P. Rödhammer and H. Wildner, vol. 2, HM22, 419-433, (2005).
6. Development of CDCC Composites by either GE-HIP or Field Assisted Sintering Technology, L. Bourgeois, G. Barbier, J. Hennicke, H.-U. Kessel, V. Martinez, J. Echeberria, J.M. Sanchez and P. Harden, Proc. of 16th International Plansee Seminar 2005, Eds. G. Kneringer, P. Rödhammer and H. Wildner, vol. 2, HM46, 684-698, (2005).
7. Effect of process parameters on density, structure and properties of field assisted sintered Al-Si-Fe-X alloy, K.Y.Sastry, L.Froyen, J.Vleugels, O.Van der Biest, R.Schattevoy and K.Hummert. Proceedings of the 4th International Conference on Science, Technology and Applications of Sintering, August-September 2005, Grenoble, France, CD-ROM p. 80-84
8. Field assisted sintering of electro-conductive ZrO2-based composites, K. Vanmeensel, D. Jiang, J. Vleugels and O. Van der Biest, Submitted to the 9th Conference and Exhibition of the European Ceramic Society, June 2005, Portoroz, Slovenia
9. Field-assisted sintering technology for the consolidation of nano-structured powders and nano-composites, K. Lambrinou, K. Y. Sastry, K. Vanmeensel, J. Vleugels, L. Froyen, O. Van der Biest, Nanotech Insight 2005, February 2005, Luxor, Egypt, Abstractbook
10. Finite Element Simulation of Field Assisted Sintering of WC-Co Hardmetals, K.Vanmeensel, A. Laptev, J. Hennicke, G. Anné, J.Vleugels, O.Van der Biest, Proc. of 16th International Plansee Seminar 2005, Eds. G. Kneringer, P. Rödhammer and H. Wildner, vol. 2, HM9, 266-282, (2005).
11. High-Energy Ball-Milling Synthesis and Densification of Fe-Co Alloy Nanopowders by Field-Activated Sintering, R. Nicula, V.D. Cojocaru, M. Stir, J. Hennicke, E. Burkel, Int. Symp. Metastable Nano Mat. (ISMANAM) July 3-7, 2005, Paris
12. Hot Pressing and Spark Plasma Sintering of Si3N4-SiC Nanocomposites, I. Zalite, N. Zhilinska, J. Grabis, P. Sajgalik, R. Kirchner, G. Kladler, Nano 05, Brno, Nov. 8-10, 2005
13. Microstructure and Mechanical Properties of Spark Plasma Sintered ZrO2-Al2O3-TiC0.5N0.5 Nanocomposites, K. Vanmeensel, K.Y. Sastry, J. Hennicke, G. Anné, D. Jiang, A. Laptev, J. Vleugels, and O. Van der Biest, Solid State Phenomena, 106 (2005) 153-160.
14. Modelling of the temperature distribution for improvement of the SPS process, A Laptev, K. Vanmeensel, J. Vleugels, O. Van der Biest. Proceedings of the 4th International Conference on Science, Technology and Applications of Sintering, August-September 2005, Grenoble, France, CD-ROM p. 130-133.
15. Modelling of the temperature distribution during field assisted sintering, K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels and O. Van der Biest, Acta Materialia, 53 (2005) 4379-4388.
16. Phase assembly and microstructure of CeO2-doped ZrO2 ceramics prepared by spark plasma sintering, Tao Xu, Peiling Wang, Pingan Fang, Yanmei Kan, Lidong Chen, Jef Vleugels, Omer Van der Biest, Jef Van Landuyt, Journal of the European Ceramic Society 25 (2005) 3437–3442
17. Simulation of Temperature Evolution During Field Assisted Sintering of Rapidly Solidified Al-alloy Powder, K.Y. Sastry, K. Vanmeensel, L. Froyen, J. Vleugels, O. Van der Biest, A. Laptev and J. Hennicke, Euro PM2005 Powder Metallurgy Congress & Exhibition, page 99-105
18. Sintering Behaviour of Low Co Content cBN-WC/Co Composites by Either GEHIP or FAST, J. Echeberria, V. Martínez, J.M. Sánchez, L. Bourgeois,G. Barbier and J. Hennicke, Proc. of 16th International Plansee Seminar 2005, Eds. G. Kneringer, P. Rödhammer and H. Wildner, vol. 2, HM23, 434-448, (2005).
19. Feldaktives Sintern „FAST“ – ein neues Verfahren zur Herstellung metallischer und keramischer Sinterwerkstoffe, Heinz U. Kessel, Jürgen Hennicke, Jürgen Schmidt, Thomas Weißgräber, Bernd F. Kieback, Matthias Herrmann, Jan Räthel, 2006, Hagener Symposium
20. Feldaktiviertes Sintern (FAST): Ein neues Verfahren zur Herstellung keramischer Nanowerkstoffe, Heinz U. Kessel, Jürgen Hennicke, DKG Symposium "Keramik aus Nanopulvern" , FA "Verfahrenstechnik"; Erlangen; 28.-29.11.2006
21. Sintern von nichtoxidischen Nanopulvern, M. Herrmann, I. Schulz, DKG Symposium "Keramik aus Nanopulvern" , FA "Verfahrenstechnik"; Erlangen; 28.-29.11.2006
22. Field Assisted Sintering and Characterisation of Ultrafine and Nanostructured Aluminium Alloys, Sastry Kandukuri, Thesis, July 2006, KUL Leuven (Belgium)
23. Field assisted sintering consolidation of Al-Si-Fe-X alloy powder/flakes produced through air atomization/melt spinning, K.Y.Sastry, L.Froyen, J.Vleugels, O.Van der Biest, R.Schattevoy and K.Hummert, Materials Science Forum Vols. 519-521 (2006) pp. 1409-1
24. Field Assisted Sintering of Cubic Boron Nitride Dispersed Cemented Carbide (CDCC) Composites, K. Vanmeensel, J. Echeberria, J.M. Sanchez, V. Martinez, L. Bourgeois, J. Hennicke, H.-U. Kessel, P. Harden, O. Van der Biest, J. Vleugels, EuroPM 2006
25. High-energy ball-milling synthesis and densification of Fe-Co alloy nanopowders by field-activated sintering (FAST), R. Nicula, V.D. Cojocaru, M. Stir, J. Hennicke, E. Burkel, Journal of Alloys and Compounds 434-435 (2007) p. 362-366.
26. Spark plasma sintering of Ti(C,N) cermets with intermetallic binder phases, M. Alvarez, J.M. Sánchez,  International Journal of Refractory Metals & Hard Materials, 11 April 2006
27. Aspects Concerning the Super-fast Sintering of Powder Metallic and Ceramic Materials, H.U. Kessel and J. Hennicke, Interceram vol. 56 (2007) [3] p. 164-166 
28. Aspekte zum superschnellen Sintern von pulvermetallurgischen und keramischen Werkstoffen, H.U. Kessel und J. Hennicke, Keramische Zeitschrift 3-2007 p. 188-190
29. Characterization of Y2O3, CeO2 and Y2O3+CeO2 Doped FGM Tetragonal, ZrO2 Ceramics by Spark Plasma Sintering, S.G. Huang, O. Van der Biest, J. Vleugels, K. Vanmeensel and L. Li, (2007) Trans Tech Publications, Switzerland, Key Engineering Materials Vol. 333  (2007) pp. 231-234
30. Development of ZrO2–WC composites by pulsed electric current sintering, S.G. Huang, K. Vanmeensel, O. Van der Biest, J. Vleugels, Journal of the European Ceramic Society 27 (2007) p. 3269–3275
31. Entwicklung langzeitstabiler direkt beheizter Verdampferschiffchen; Herrmann, M.; Räthel, J.; Nürnberger, M.; Hennicke, J.; Müller, T.; Heike, S.; Poster; WING Konferenz; 22.-24.10.2007; Berlin
32. Feldaktiviertes Sintern (FAST) von keramischen Werkstoffen, H.U. Kessel, M. Herrmann und J.Räthel, DKG Symposium "Thermische Verfahrenstechnik in der Keramik" , FA "Verfahrenstechnik"; Erlangen; 27.-28.11.2007
33. Field assisted sintering of electro-conductive ZrO2-based composites, K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels, Journal of the European Ceramic Society 27 (2007) p. 979–985
34. Field Assisted Sintering of Zirconia-Based, Electrically Conductive Ceramic Composites, K. Vanmeensel, Thesis, May 2007, KUL Leuven (Belgium)
35. Influence of CeO2 Reduction on the Microstructure and Mechanical Preperties of Pulsed Electric Current Sintered Y2O3-CeO2 Co-Stabilized ZrO2 Ceramics, S. G. Huang, K. Vanmeensel, O. Van der Biest, J. Vleugels, Journal of the American Ceramic Society, Vol. 90, No. 5 (May 2007) p. 1420–1426
36. Microstructure and Electrical Properties of Si3N4/TiN Composites Sintered by Hot Pressing and Spark Plasma Sintering.  Z. Guo, G Blugan, R Kirchner, M.J. Reece, T Graule and J Kubler, Ceramic International, 33 p. 1223-1229 (2007)
37. Neue technologische Entwicklungen und Anwendungen von Komponenten aus Siliciumcarbid und Siliciumnitrid, Technologie, G. Wötting, W. Martin, K. Berroth, H. U. Kessel cfi/Ber. DKG 84 (2007) No. 4 D15-D21
38. Properties of NbC–Co cermets obtained by spark plasma sintering, S.G. Huang, O. Van der Biest, L. Li, J. Vleugels,  , Materials Letters 61 (2007) p 574–577
39. Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel, N. Frage, S. Cohen, S. Meir, S. Kalabukhov, M.P. Dariel, Editorial Manager(tm) for Journal of Materials Science, Manuscript Draft, Manuscript Number: JMSC6553
40. SPS Technology – A New Range of Possibilities for the FAST Consolidation of Innovative Material, Heinz Kessel, 5th Intl. Symposium on nitrides 2007
41. Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing, Wen-Wen Wu, Guo-Jun Zhang, Yan-Mei Kan, Pei-Ling Wang, Kim Vanmeensel, Jozef Vleugelsc and Omer Van der Biest,   Scripta Materialia 57 (2007) p. 317–320
42. Systematic Growth, cfi/Ber. DKG 84 (2007) No. 6 E16-E18
43. The effect of the electrical properties on the pulsed electric current sintering behavior of ZrO2 based ceramic composites, K. Vanmeensel, B. Neirinck, S. Huang, S. Salehi, O. Van der Biest, J. Vleugels,  Ceramic Engineering and Science Proceedings. Vol. 28, no. 7, pp. 67-78. 2008
44. The influence of percolation during pulsed electric current sintering of ZrO2–TiN powder compacts with varying TiN content, K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels,  , Acta Materialia 55 (2007) p. 1801–1811
45. VC, Cr3C2 and NbC doped WC–Co cemented carbides prepared, by pulsed electric current sintering, S.G. Huang, L. Li, K. Vanmeensel, O. Van der Biest and J. Vleugels, International Journal of Refractory Metals & Hard Materials 25 (2007) p. 417–422
46. Wachstum mit System, cfi/Ber. DKG 84 (2007) No. 6 D24-D25
47. Binderless WC and WC–VC materials obtained by pulsed electric current sintering, S.G. Huang, K. Vanmeensel, O. Van der Biest and J. Vleugels,   International Journal of Refractory Metals & Hard Materials 26 (2008) p. 41–47
48. Densification of electrically conductive composites close to percolation threshold, J. Räthel, M. Herrmann, W. Beckert, M. Nürnberger, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.18-21
49. FAST (SPS) Production Systems for the Powder Metallurgy and Ceramics Insustry, R. Kirchner, Cfi/Ber. DKG 85 (2008) No. 10, E19
50. Field Activated Sintering Technology (FAST) for Ceramic Materials, J. Räthel, H.U. Kessel and M. Herrmann, cfi/Ber. DKG 85 (2008) No.13 p. 39-42
51. Influence of starting powder on the microstructure of WC–Co hardmetals obtained by spark plasma sintering, S.G. Huanga, K. Vanmeensel, L. Lib, O. Van der Biest and J. Vleugels, Materials Science and Engineering A 475 (2008) 87–91
52. Magnesium Aluminate Spinel Consolidated by FAST (Field Assisted Sintering Technique): Grain Growth Phenomena, S. Meir, S. Kalabukhov, N. Frumin, M. P. Dariel, N. Frage, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.434-438
53. Microstructure and properties of boron carbide processed by FAST (Field Assisted Sintering Technology), S. Hayun, M. P. Dariel and N. Frage, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.200-205
54. Nanocomposites consolidated by SPS Technology. O. Zgalat-Lozynskyy, A. Ragulya, M. Herrmann, M. Zamula, A. Deravyanko, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.443-449"
55. NbC as grain growth inhibitor and carbide in WC–Co hardmetals, S.G. Huang, R.L. Liu, L. Li, O. Van der Biest and J. Vleugels,   International Journal of Refractory Metals & Hard Materials 26 (2008) p. 389–395
56. Pulsed electric current sintering of electrically conductive ceramics, K. Vanmeensel, S. G. Huang, A. Laptev, S. A. Salehi, A. K. Swarnakar, O. Van der Biest and J. Vleugels, J Mater Sci (2008) 43: p 6435–6440
57. Rapid Hot Pressing of Copper Composites for Electronics’ Cooling Applications, Th. Schubert*, T. Weißgärber, B. Kieback, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.200-205
58. Sintering and characterization of WC-NbC-Co hardmetals with VC and Cr3C2 additive, S.G. Huang, L. Li, O. Van der Biest, J. Vleugels, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.342-349
59. Spark Plasma Sintering of Advanced Hard Materials, O. Van der Biest, S. Huang, K. Vanmeensel, A. Laptev, J. Vleugels, Advanced Processing for Novel Functional Materials (APNFM 2008), Dresden, 23 – 25 January 2008, pp.7-13
60. Spark Plasma Sintering of Conductive and Nonconductive Composites (BN-TiB2), M. Herrmann, J. Raethel, W. Beckert, International Conference on Sintering November 16-20, 2008 La Jolla (California, USA)
61. Tailored sintering of VC-doped WC–Co cemented carbides by pulsed electric current sintering, S.G. Huang, K. Vanmeensel, L. Li, O. Van der Biest and J. Vleugels,   International Journal of Refractory Metals & Hard Materials 26 (2008) p. 256–26
62. Temperature distribution during Spark Plasma Sintering; J. Raethel, M. Herrmann, W. Beckert, International Workshop on Spark Plasma Sintering; Avignon, France; 06.-07.10.2008
63. VC- and Cr3C2-doped WC–NbC–Co hardmetals, S.G. Huang, L. Li, O. Van der Biest and J. Vleugels, Journal of Alloys and Compounds 464 (2008) p. 205–211
64. Y2O3 and Nd2O3 co-stabilized ZrO2-WC composites, Sedigheh Salehi, Omer Van der Biest and Jef Vleugels, J Materials Science (2008) 43 p 5784–5789
65. Bulk Nanoceramics and Nanocomposites: Processed by Pulsed Electric Current Sintering (PECS), O. Van der Biest, K. Vanmeensel,  S. Huang and J. Vleugels,   MS&T 09, Pittsburgh October 25-29, 2009
66. Temperature distribution for electrically conductive composite material; Räthel, J.; Herrmann, M.; Vortrag; Sintering 2009; 07-11.10.2009; Kiev, Ukraine
67. Neuartige Stahl-Hartstoff-Verbundwerkstoffsysteme - ein möglicher Schlüssel zur Kraftstoffreduktion, A. Winkelmann, A.M. Huber, R. Oberacker, S. Schwarz, J. Hennicke, A. Nagel, S. Reymann, 2009, Hagener Symposium
68. Novel Current Induced Short-Time Sintering Processes for the Production of Diamond Tools, W. Tillmann, C. Kronholz, M. Ferreira, EuroPM 2009
69. Sintered Materials on the Way to Production by Means of Modern SPS Technologies, H.U. Kessel, cfi/Ber.DKG 86 [10] (2009) E145-E154.
70. Spark Plasma Sintering/ Field Assisted Sintering of Ceramic Materials, M. Herrmann, J. Raethel and I Schulz, Interceram, Vol.58 (2009), No.2-3, pp.109-114
71. Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST), J. Räthel, M. Herrmann and W. Beckert, Journal of the European Ceramic Society 29 (2009) p.1419–1425
72. Y2O3–Nd2O3 double stabilized ZrO2–TiCN nanocomposites, S. Salehi, B. Yüksel, K. Vanmeensel, O. Van der Biest and J. Vleugels,   Materials Chemistry and Physics 113 (2009) p. 596–601
73. FAST/SPS - Schnellsintertechnik und ihre Anwendung in Labor und Produktion, H.U.Kessel, J.Hennicke, Handb. Techn. Keram. Werkst. (Ed.: J.Kriegesmann), Kap. 3.6.7.1., Jan. 2010
74. Spark Plasma Sintering of Novel Materials - taking the next step towards industrial production, H.U.Kessel, J.Hennicke, R.Kirchner, T.Kessel, (ICACC-S8-060-2010), 34th International Conference on Advanced Ceramics and Composites, American Ceramic Society, January 24-29, 2010, Daytona Beach, FL, USA
75. Rapid Sintering of Novel materials by FAST/SPS – Further Development to the Point of an Industrial Production Process with High Cost Efficiency, H.U.Kessel, J.Hennicke, R.Kirchner, T.Kessel, Februar 2010
76. Kurzzeitsintern neuer Materialien mittels FAST/SPS  -  Vom Labor zum kosteneffizienten Produktionsverfahren, H.U.Kessel, J.Hennicke, R.Kirchner, T.Kessel, April 2010
77. Fast Siliconization of C/C-Preforms via LSI, A. Konschak, R. Schulte, W. Krenkel, J. Hennicke, H.U. Kessel, 7th International Conference on High Temperature Ceramic Matrix Composites HTCMC 20-22 Sept 2010, Bayreuth, Germany 
78. Kurzzeitsintern zur kosteneffektiven Produktion und Werkstoffentwicklung, H.U. Kessel, J. Hennicke, T. Kessel, cfi/Ber. DKG 87 (2010) No. 10, D15-D18 
79. Short-Time Sintering for Cost-Efficient Production and Material Development, H.U. Kessel, J. Hennicke, T. Kessel, cfi/Ber. DKG 87 (2010) No. 10, E23-E26 
80. Kurzzeitsintern als Produktionsverfahren für die Pulvermetallurgie, J. Hennicke, H.U. Kessel, T. Kessel, 2010, Hagener Symposium 
81. 2010 Hagen Symposium Reports: Nanostructured PM Materials, G.Schlieper, http://www.ipmd.net/articles/001052.html 
82. 2010 Hagen Symposium Reports: Aluminium alloys for demanding applications, G.Schlieper, http://www.ipmd.net/articles/001085.html
83. 2010 Hagen Symposium Reports: Improved material properties with short-time sintering, G.Schlieper, http://www.ipmd.net/articles/001095.html
84. 2011-07 CFI Sonderdruck: Effiziente Sinteranlagen für die Produktion von Ingenieurkeramik, J. Hennicke, H.U. Kessel, R. Kirchner, cfi/Ber. DKG 88 (2011) No. 6-7 D21-D24
2011-07 Reprint from CFI: Efficient Sintering Equipment for the Production of Engineering Ceramics, J. Hennicke, H.U. Kessel, R. Kirchner, cfi/Ber. DKG 88 (2011) No. 6-7 E33-E36
loading