

Company Profile Sintering Technology

Dipl.-Ing. René Kirchner Head of Sales

Dr.-Ing. Jürgen Hennicke Head of Research & Development

FCT Systeme GmbH, Rauenstein

Rauenstein, 23 - MAY - 2017

Outline

Company Profile

- FCT Group History and Business Areas
- FCT Systeme GmbH
 - History
 - Philosophy
 - Portfolio
- FCT Rapid Sintering Technology "FAST"
- FCT Systeme Technical Center
- Course of a Typical Customer Development Project

History of the FCT Group

1982	Nucleus of FCT Group: Foundation of KCE Sondermaschinen GmbH by Heinz U. Kessel Development and manufacturing of sintering plants for the production of engineered ceramics	21
1985	FCT Fine Ceramics Technologies The technology venture to KCE. During the 1980's, KCE and FCT made their mark by manufacturing the largest induction-heated sintering plant (1985) and the most powerful hot press (1989) to date	
1994	Foundation of FCT Hartbearbeitungs GmbH Development and finishing of components made from engineered ceramics	- 1
1996	Foundation of FCT Ingenieurkeramik GmbH Manufacturing of ceramic high-performance materials and composites	1 st hot press 1 - Vacuum / G - Highest Ter
1996	Foundation of FCT Systeme GmbH as direct successor to KCE Sondermaschinen GmbH	
2002	Development of the first HP D plant a new and powerful plant type based on the technology of field assisted sintering (FAST)	
2003	to 2011 Development and delivery of 68 customised plants for the manufacturing of solar-grade silicon for leading solar companies	
2012	Development of the most successful hybrid concept Combined FAST/SPS and hot pressing in one plant	
2016	Launch of new multi purpose sintering units with flash sintering option New options for material development and production	
FC	2017-05-23_FCT_Company + FAST DHE.pptx	

L**970** :

- Gas
- mperatures

The FCT-Group: Interdisciplinary, Professional Support and Consulting for our Customers

190 Employees - **25 Mio€ Turnover (2016)** 2017-05-23_FCT_Company + FAST DHE.pptx

FCT Ingenieurkeramik GmbH

Specialty: Large Si₃N₄ Parts, Complex Geometry

Surveillance Camera Housing (gas-pressure sintered Si₃N₄)

Highest precision and expertise required for green machining, sintering and final machining!

FCT Ingenieurkeramik GmbH

Specialty: Large Si₃N₄ Parts, Complex Geometry

Surveillance Camera Housing (gas-pressure sintered Si₃N₄)

Specialty: Large Si₃N₄ Parts, Complex Geometry

Surveillance Camera in Action

FCT Hartbearbeitungs GmbH

Specialty: Large SiC Parts, Complex Geometry

Large-sized Milling Cylinder (SSiC)

é	Diameter:	500 mm
•	Height:	700 mm
•	Weight:	70 kg (SiC)
	For comparison:	320 kg (WC)

 Probably the largest-volume component ever achieved from sintered silicon carbide

FCT

- A company of the FCT group located in Rauenstein, community of Frankenblick, Federal State of Thuringia.
- Active in the field of high performance sinter materials, as innovative systems provider and machinery manufacturer.

FCT Systeme GmbH –

High-Temperature Equipment and Technology

- Founded in 1996 as Part of the FCT Group
- Successor of KCE Sondermaschinen GmbH Founded in 1982
- 55 Employees
- 15% of Current Employees Active in the Field of Research and Development.
- Export quota close to 90%.
- More than 600 High-Temperature Furnaces Sold to Customers Worldwide
- 100% Family Enterprise
- Growth and Independence by 100% Private Equity Financing
- **12.6 Mio€ Turnover (2016)**

FCT Systeme GmbH –

Not only a simple furnace manufacturer, but:

- Highly advanced technologies
- Well-equipped technology center:
 - Own pilot plant arrangements
 - Experienced team of technicians, engineers, and scientists
 - Continuous development and improvement of advanced system concepts and sintering processes.
 - Customer Projects to Support Costumer's Developments:
 Idea → Sample → Prototype → Pilot plant → Serial production technology
 - Close and long-term collaborations with universities and research organizations worldwide and in the frame of national or European funded R&D joint projects
- Well protected costumer IP by NDA
- "Turn-key" projects from the raw material to the finished product
- Premium after-sale service

FCT Systeme GmbH -

National and International R & D Project Work

....

The FCT-Concept:

Non-Oxide Engineering Ceramics Nitrides, Carbides and Borides

The FCT-Concept:

- Non-Oxide Engineering Ceramics
 Nitrides, Carbides and Borides
 - **Ceramic Matrix Composites CMC** BN/TiB₂, Al₂O₃-SiC_w, ZrO₂-Ti(C,N), ...
- **Powder-Metals** W, Mo, Al-Si-Zr-..., Nd-Fe-B, Zr-Hf-Co-Sb-Sn-...
- Metal Matrix Composites WC/Co, AI-SiC, AI-C_f, TZM, ...

FCT Systeme GmbH – High-Temperature Equipment and Technology

- - - - - - -

Advanced Vacuum Sintering Furnace (FH W 4000)

- Useful Volume 4.8 m³
 (2200x2400x1100 mm)
- 2200 °C
- 10⁻² mbar
- Ar / N_2 / He

Twin Vacuum Sintering Furnace (FH W 1750)

- Useful volume 600 dm³ (500x480x2500 mm)
- 2200 °C
- 10⁻² mbar
- Ar / N₂ / He
- Debinding 50 kg/h
- Rapid cooling with heat exchanger

Gas Pressure Sintering Furnace (FP W 300-SD)

- Useful volume 300 dm³
- 2200°C
- 10 MPa
- Ar / N_2 / He

Production Hot Press System (H-HP W 400-HP)

.

- 2200°C
- 4000 kN
- 5 x 10⁻² mbar
- Ar / N_2 / He
- High pressure
 up to 10 bar
- Rapid cooling
- High temperature
 homogenity
- Loading device

FAST / SPS : Rapid Sintering of a Powder Compact

FAST / SPS : Functional Principle

.

Joule Heat = f (Current DENSITY)

PULSE Current = PEAK Current Density

POTENTIAL EFFECTS OF ELECTRICAL FIELD PROMOTING SINTERING: Boosted Locally, Peaked Temporally

- Joule Heating
- Transport Phenomena
 - Electrodiffusion
 - Electromigration
 - Generation of Dislocations
 - Thermoelectric Effects (Peltier)
- Mechanical Force Effects
 - Electrodynamic Forces
 - Electrostriction
 - Particle Alignment
 - Electroplasticity
 - Pinch Effect
 - Ponderomotive Forces
- Surface Plasmons
- Multiple SHS (selfpropagating HT synthesis)
- Dielectric Phenomena
 - Polarization
 - Dielectric Breakdown

Diffusion Bonding of Cu / Ni

Direction of Electron Migration Ni >> Cu >> Ni

Influence of Current Direction! = "Electromigration"

2017-05-23_FCT_Company + FAST DHE.pptx Zhao et al., J.Appl..Phys. 101 (2007) 114902

Intermetallic by Reaction Sintering of Mo / Si

Intermetallic by Reaction Sintering of Mo / Si

MoSi₂ Formation

Reaction Sintering of Mo / C

 β - Mo₂C Formation at 1570°C

Z.A.Munir et al., J.Am.Ceram.Soc. 94 (2011) 1-19

FAST/SPS of 3Y-TZP

E=0 (d=360nm)

DC (d=217nm)

AC(60Hz) (d=134nm)

Figure 3. SEM micrographs showing the effect of a shall DO $and CACCaeto (D \neq 10.00 \text{ the grain size } d \text{ of fully sintered } (\rho_r = 1.0) 3Y-TZP.$

FAST/SPS of 3Y-TZP

Fields on Grain Growth, Diffusional Creep, Sintering and Related **Phenomena in Ceramics**

Rishi Raj,[†] Marco Cologna, and John S. C. Francis

Advantages of FAST/SPS

FCT's FAST/SPS Systems Worldwide

FCT's FAST / SPS Distribution Worldwide

as at 12/2014

FAST/SPS in Laboratory

"The Lab is the Classical Application Field of FAST"

Why?

Advantages of FAST/SPS:

- High heating and cooling rates with low thermal gradients
 - \Rightarrow Rapid densification
 - \Rightarrow Suppressed grain growth
 - \Rightarrow Low alloying in MMCs, FGMs, etc...
 - \Rightarrow New metastable materials and composites possible

The material scientist can create 10...20 samples a day

Each one made of an all new material

FAST/SPS System for the Lab - 100 kN

Technical Data		
Pressing force	max. 100 kN	
Temperature	RT – 2200°C	
Sample size	arnothing max 60 mm	
Heating power	42 kW	

Options:

- Advanced Current Pulse Parameters
- Measurement of Electrical Resistivity
- Vacuum, Protection Gases
- Glove Box Integration

FAST/SPS System with Glove Box Option

- - - - - - -

Sliding doors provide convenient operation of the glove box as well as direct access to the process chamber

Multi Purpose System for the Lab - 25 kN

FCI

Operating Modes: (combinable in any order)

- FAST/SPS
- Hot Pressing
- **FAST/Hybrid** (minimized thermal gradients)
- **FAST/Flash** (high field hybrid)

Options:

- Automatic Mode Switching
- Advanced Current Pulse Parameters
- Measurement of Electrical Resistivity
- Vacuum, Protection Gases, Hydrogen, Air

Range of FAST/SPS Units from Lab Scale to Industrial Scale

FAST / SPS of Forging / Extrusion Blanks Nano-Scaled Al / Si / ... Alloy or AMC

Th. Schubert, J. Schmidt, T. Weissgärber, B. Kieback, Spark Plasma Sintering and Hot Extrusion of Aluminium Alloy Powder Proceedings of the EuroPM 2009, Copenhagen, 2009, Vol. 2, 363-368

SPS Process of Al/Si/... Alloys

Pre-Shaped Blank for Piston Forging Full Density after 90 Seconds Heating Time

FAST / SPS Consolidated Al based MMC

Properties:

- controlled thermal expansion: 7 24 ppm
- low densities: 2,4 2,7g/cm³
- high thermal conductivity: 120 180 W/mK
- electrical conductivity: < 10^{-6} ohm x cm
- excellent thermal stability up to 500°C
- high specific stiffness

Replacements for:

- Copper Molybdenum (Cu-Mo / Mo-Cu)
- Copper Tungsten (Cu-W / W-Cu)
- Aluminium Silicon Carbide (Al-SiC)
- Kovar

PM-SiAl40

2017-05-23_FCT_Company + FAST DHE.pptx

100 µm / 10

100 µm / 10

Puncture of a Dia107mm Ti-Al-Disc by Disruptive Discharge of DC Heating Current

Rapid and Homogeneous Sintering of a Dia 107 mm Ti-Al-Disc by Pulsed DC Heating Current

Applications for Near Net Shaped Components

Mouldings made of Si₃N₄, SiC and B₄C

Wear rings made of Si₃N₄ and SiC with up to Ø350 mm (turbo gas compressors and circulation pumps in chemical industry)

Improved Productivity: Automation

Improved Productivity: Integrated Pressing Tool

Double-Action Hydraulic Powder Press With Integrated FAST² Sintering Technology:

kN
mm
mm
mm
kN
min ⁻¹

Automatic filling system

- controlled by displacement transducer

- optional rocking motion

Electrical Power:

15 kW + 40 kW

Improved Productivity: Further Increase of Heating Rate

STANDARD FAST/SPS

CHALLENGE:

Thermal Gradients are Growing if Heating Rate, Temperature and Sample Size are Increasing!

Improved Productivity: Further Increase of Heating Rate

CONVENTIONAL HOT PRESSING

Direction of Thermal Gradients Reverse to FAST/SPS Gradients

Improved Productivity: Further Increase of Heating Rate

Optical

Temperature

FAST/Hybrid HEATING

Combination of Two Independently Controlled Heaters Allows Compensation of Thermal Gradients

Improved Productivity: Large Parts

Industrial FAST/Hybrid System

ompany + FAST DHE.pptx

Improved Productivity: Large Parts

Industrial FAST/Hybrid System

PERFORMANCE:		
Pressing force	max. 4000 kN	
Temperature	F	RT – 2400°C
Sample size	Ø150	– 450 mm
Heating power	FAST/SPS: Induction:	500 kW 500 kW
Gas pressure	ABS: < 5 REL: up	5*10 ⁻² mbar to 60 mbar
Working gases	А	r/N ₂ /Other

Improved Productivity: Multiple Tools

Improved Productivity: Decoupling of Process Steps

Improved Productivity: Decoupling of Process Steps

FAST Production Unit with Cooling Channel

FC

Double Chamber: Decoupling of Sintering Step and Cooling Step

Cooling Channel

2017-05-23_FCT_Company + FAST DHE.pptx

Щ

Improved Productivity: Decoupling of Process Steps

FAST Production Unit with Preheating and Cooling Channel

Preheating Channel

Cycle Time

2017-05-23_FCT_Company + FAST DHE.pptx

H.

1.1

Cooling Channel

58

FAST Production Unit with Preheating and Cooling Channel

FAST/SPS

FAST/Hybrid

....

FAST/Flash

HP

- Automation

FCT

- Integrated Pressing Tool
- Highest Heating Rate by FAST/Hybrid
- Multiple Cavity Pressing Tools
- Decoupling of Process Steps

FCT Technical Center

- **Job orders**
- **Development support**
- **Training programs**
- **System solutions**
- **Own R&D department**
- **Expertise of FCT specialists**

Induction Heated Vacuum Sintering Furnace FS I

Properties	
Temperature	RT – 2500°C
Usable volume	800 x 800 x 2000 mm
Options	Debinding Fast Cooling
Gas pressure	ABS: < 5*10 ⁻² mbar REL: up to 60 mbar
Working gases	Ar/N ₂ /CO/Other

Gas Pressure Sintering Furnace FP W 90

Properties	
Temperature	RT – 2200°C
Usable volume	Ø 350 x 700
Option	Debinding dewaxing
Gas pressure	ABS: < 5*10 ⁻² mbar REL: up to 60 mbar High pressure: up to 100 bar
Working gases	Ar/N ₂ /H ₂ /Other Control of gas mixture

Resistance Heated Hot Press with Gas Pressure HP P

Properties		
Pressing force	max. 50 t	
Temperature	RT – 2400°C	
Sample size Usable volume	∅40 – 150 mm ∅ 200 x 250	
Option	debinding	
Gas pressure	ABS: < 5*10 ⁻² mbar REL: up to 60 mbar High pressure: up to 10 bar	
Working gases	Ar/N ₂ /Other	

z = _ _ _ _ _ _ _ _

Hybrid Heated FAST/SPS Furnace H-HP D 25-FL

Properties		
Pressing force	max. 25 t	
Temperature	RT – 2400°C	
Sample size	Ø20 – 100 mm	
Heating power	FAST/SPS:120 kWInduction:120 kW	
Gas pressure	ABS: < 5*10 ⁻² mbar REL: up to 60 mbar	
Working gases	Ar/N ₂ /Other	
Option	Flash Sintering 180 V; 200 A; 15 kW	

Hybrid Heated FAST/SPS Furnace H-HP D 320

Properties		
Pressing force	max. 320 t	
Temperature	RT – 2400°C	
Sample size	Ø80 – 350 mm	
Heating power	FAST/SPS:400 kWInduction:400 kW	
Gas pressure	ABS: < 5*10 ⁻² mbar REL: up to 60 mbar	
Working gases	Ar/N ₂ /Other	

Course of a Typical Customer Project at FCT Systeme

- Customer's idea
- 1st contact and discussion
- Non disclosure agreement
- Literature study
- Creation of work plan for 1st project phase
- Raw material delivery
- Lab scale test cycles
- Sample characterization and assessment of the results
- Upscaling
- Concept & design of pilot plant / serial production plant

The Circle of Success

FCT

--

Thank you

for your attention!

FCT Systeme GmbH – Rauenstein – Gewerbepark 16 – D-96528 Frankenblick Phone: +49 36766 824 – 0 / Fax: +49 36766 824 – 150 / E-Mail: info@fct-systeme.de / Web: www.fct-systeme.de/en