Bibliography

  • J. Hennicke, “Hybrid Sintering - a New Trend for Innovative Material Solutions,” in Ceramitec Forum, 2018.
  • E. Kuznetsova, P. Peretyagin, A. Smirnov, W. Solis, and R. Torrecillas, “Near-Net Shapes Al2O3–SiCw Ceramic Nanocomposites Produced by Hybrid Spark Plasma Sintering,” in Proceedings of the Scientific-Practical Conference “Research and Development - 2016,” Cham: Springer International Publishing, 2018, pp. 397–404.
  • V. Tyrpekl et al., “On the Role of the Electrical Field in Spark Plasma Sintering of UO2+x,” Sci. Rep., vol. 7, no. April, p. 46625, 2017.
  • N. Ray et al., “Novel processing of Ag-WC electrical contact materials using spark plasma sintering,” Mater. Des., vol. 121, no. May, pp. 262–271, 2017.
  • S. Diouf, M. O. Durowoju, M. B. Shongwe, and P. A. Olubambi, “Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering,” Leonardo Electron. J. Pract. Technol., vol. 30, no. June, pp. 269–286, 2017.
  • T. Kaden et al., “Silicon Powder Based Ingots and Substrates, Processed by Spark Plasma Sintering,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, p. .
  • J. Hennicke, T. Kessel, J. Pötschke, and A. Vornberger, “Rate Controlled Sintering Of Binderless Tungsten Carbide,” in EuroPM, 2017, pp. 1–6.
  • A. Y. Achenani, M. Saâdaoui, A. Cheddadi, and G. Fantozzi, “Modélisation du procédé de frittage flash: Homogénéisation de la température,” in 4ème Édition des Journées Scientifiques Franco-Maghrébines, 2017.
  • J. Hennicke, T. Kessel, and J. Raethel, “Combining Flash Sintering / Sinterforging with Hybrid FAST/SPS Technology for Oxide and Non-Oxide Materials,” in ICACC, 2016, pp. 1–6.
  • J. Hennicke, T. Kessel, and J. Raethel, “Enhancements on FAST Sintering Systems Promote Transfer from the Lab to Industrial Applications,” in ICACC, 2016, pp. 1–10.
  • J. Laszkiewicz-Łukasik, L. Jawroska, P. Putyra, P. Klimczyk, and G. Garzeł, “The influence of SPS heating rates on the synthesis reaction of tantalum diboride,” Boletín la Soc. Española Cerámica y Vidr., pp. 1–10, 2016.
  • J. Hennicke and T. Kessel, “Benefits of Short-Time Sintering for Cost-Efficient Production and Material Development,” 2016.
  • R. Licheri, C. Musa, R. Orrù, G. Cao, D. Sciti, and L. Silvestroni, “Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering,” J. Alloys Compd., vol. 663, pp. 351–359, 2016.
  • J. Gonzalez-Julian et al., “Effect of Internal Current Flow during the Sintering of Zirconium Diboride by Field Assisted Sintering Technology,” J. Am. Ceram. Soc., vol. 99, no. 1, pp. 35–42, 2016.
  • R. Stadelmann et al., “Mechanical properties and residual stresses in ZrB2-SiC spark plasma sintered ceramic composites,” J. Eur. Ceram. Soc., vol. 36, no. 7, pp. 1527–1537, 2016.
  • J. Hennicke, T. Kessel, and J. Raethel, “New FAST Consolidation Methods on the Way ‘ from Lab to Fab ,’” in ICC, 2016.
  • D. Paraskevas, S. Dadbakhsh, J. Vleugels, K. Vanmeensel, W. Dewulf, and J. R. Duflou, “Solid state recycling of pure Mg and AZ31 Mg machining chips via spark plasma sintering,” Mater. Des., no. July, 2016.
  • S. Grasso et al., “Flash Spark Plasma Sintering (FSPS) of alpha and beta SiC,” J. Am. Ceram. Soc., vol. 99, no. 5, pp. 1534–1543, 2016.
  • T. Kessel and J. Hennicke, “Sintering of High Quality Large Area Tiles from Difficult to Sinter Powder by Hybrid-FAST/SPS and its Development to an Efficient Industrial Production Process,” in Powdermet, 2016.
  • M. B. Shongwe, S. Diouf, M. O. Durowoju, P. A. Olubambi, M. M. Ramakokovhu, and B. A. Obadele, “A comparative study of spark plasma sintering and hybrid spark plasma sintering of 93W-4.9Ni-2.1Fe heavy alloy,” Int. J. Refract. Met. Hard Mater., vol. 55, no. April, pp. 16–23, 2016.
  • F. Vogeler, B. Lauwers, and E. Ferraris, “Analysis of Wire-EDM Finishing Cuts on Large Scale ZrO2-TiN Hybrid Spark Plasma Sintered Blanks,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 268–273, 2016.
  • J. Hennicke, “Progress on Fast Sintering Technology Boosts Transfer from Lab to Industry,” in EuroPM, 2015.
  • T. Saunders, S. Grasso, and M. J. Reece, “Plasma formation during electric discharge (50V) through conductive powder compacts,” J. Eur. Ceram. Soc., vol. 35, no. 3, pp. 871–877, Mar. 2015.
  • D. I. Yushin, A. V. Smirnov, N. W. Solis Pinargote, P. Y. Peretyagin, and R. Torrecillas San Millan, “Modeling Process of Spark Plasma Sintering of Powder Materials by Finite Element Method,” Mater. Sci. Forum, vol. 834, no. November 2015, pp. 41–50, 2015.
  • D. Giuntini, J. Raethel, M. Herrmann, A. Michaelis, and E. A. Olevsky, “Advancement of Tooling for Spark Plasma Sintering,” J. Am. Ceram. Soc., vol. 98, no. 11, pp. 3529–3537, Nov. 2015.
  • J. Hennicke, T. Kessel, and J. Lichtscheindl, “From Prototypes to Production-Capable Sintering Technology,” CFI Ceram. Forum Int., vol. 95, no. 10–11, pp. E1–E3, 2015.
  • F. Al Mansour, N. Karpukhina, S. Grasso, R. M. Wilson, M. J. Reece, and M. J. Cattell, “The effect of spark plasma sintering on lithium disilicate glass-ceramics,” Dent. Mater., 2015.
  • J. Räthel, J. Hennicke, and M. Herrmann, “Potential Applications of Hybrid-Heated FAST / SPS Technology,” CFI Ceram. Forum Int., vol. 92, no. 9, pp. 1–3, 2015.
  • O. Y. Sorokin, M. L. Vaganova, S. S. Solntsev, and I. V. Osin, “Joining of silicon carbide ceramic by hybrid spark plasma sintering,” Russ. J. Appl. Chem., vol. 88, no. 5, pp. 839–845, 2015.
  • D. V. Grashchenkov, O. Y. Sorokin, Y. E. Lebedeva, and M. L. Vaganova, “Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering,” Russ. J. Appl. Chem., vol. 88, no. 3, pp. 386–393, 2015.
  • D. I. Yushin, A. V. Smirnov, N. W. Solis Pinargote, P. Y. Peretyagin, and R. Torrecillas San Millan, “Modeling Process of Spark Plasma Sintering of Powder Materials by Finite Element Method,” Mater. Sci. Forum, vol. 834, no. November 2015, pp. 41–50, 2015.
  • A. V. Smirnov, D. I. Yushin, I. A. Zverev, A. R. Maslov, and R. Torrecillas, “Modeling of hybrid method as combined spark plasma sintering and hot pressing physical processes,” Mech. Ind., vol. 16, no. 7, p. 712, 2015.
  • S. Ran, H. Sun, K. Vanmeensel, S. Huang, and J. Vleugels, “Influence of ZrH2 addition on pulsed electric current sintered ZrB2-SiC composites,” Scr. Mater., vol. 77, pp. 41–44, 2014.
  • S. Grasso, T. Saunders, H. Porwal, and M. Reece, “Ultra-high temperature spark plasma sintering of ??-SiC,” Ceram. Int., vol. 41, no. 1, pp. 225–230, 2014.
  • R. Ritasalo, M. Antonov, R. Veinthal, and S.-P. Hannula, “Comparison of the wear and frictional properties of Cu matrix composites prepared by pulsed electric current sintering,” Proc. Est. Acad. Sci., vol. 63, no. 1, pp. 62–74, 2014.
  • M. A. Lagos, I. Agote, J. M. San Juan, and J. Hennicke, “Fabrication of TiAl alloys by alternative powder methods,” TMS Annu. Meet., vol. 2014–Febru, pp. 77–82, 2014.
  • O. Guillon et al., “Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments,” Advanced Engineering Materials, vol. 16, no. 7. Wiley-VCH Verlag, pp. 830–849, 2014.
  • J. Raethel, J. Hennicke, Y. Dyatlova, M. Herrmann, and V. Rumyantsev, “New Developments of FAST/SPS Tool Materials,” Adv. Sci. Technol., vol. 88, pp. 37–42, 2014.
  • O. Y. Sorokin, S. S. Solntsev, S. A. Evdokimov, and I. V. Osin, “Hybrid spark plasma sintering method: principle, posiibilities, future prospects,” «Aviation Mater. Technol., vol. 0, no. s6, pp. 11–16, 2014.
  • H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouh??, and M. J. Reece, “Graphene reinforced alumina nano-composites,” Carbon N. Y., vol. 64, pp. 359–369, 2013.
  • G. Stokkan, A. Johanson, E.-J. E. J. Øvrelid, A. Ciftja, J. Hennicke, and A. Ulyashin, “Sintered Low Resistivity Substrates for Hybrid Solar Cells,” doi.org, no. 28, p. , Nov. 2013.
  • M. Suarez et al., “Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials,” in Sintering Applications, InTech, 2013, pp. 1–25.
  • A. Centeno et al., “Graphene for tough and electroconductive alumina ceramics,” J. Eur. Ceram. Soc., vol. 33, no. 15–16, pp. 3201–3210, 2013.
  • N. Roussel et al., “Highly dense, transparent ??- Al2 O3 ceramics from ultrafine nanoparticles via a standard sps sintering,” J. Am. Ceram. Soc., vol. 96, no. 4, pp. 1039–1042, 2013.
  • S. Grasso, H. Yoshida, H. Porwal, Y. Sakka, and M. Reece, “Highly transparent alpha-alumina obtained by low cost high pressure SPS,” Ceram. Int., vol. 39, no. 3, pp. 3243–3248, 2013.
  • S. Ran, S. G. Huang, O. Van der Biest, and J. Vleugels, “High-strength ZrB2-based ceramics prepared by reactive pulsed electric current sintering of ZrB2–ZrH2 powders,” J. Eur. Ceram. Soc., vol. 32, no. 10, pp. 2537–2543, Aug. 2012.
  • N. Hindawi Publishing Corporation. et al., Journal of nanomaterials., vol. 2012. Hindawi, 2012.
  • N. Saheb et al., “Spark plasma sintering of metals and metal matrix nanocomposites: A review,” J. Nanomater., vol. 2012, 2012.
  • S. G. Huang, K. Vanmeensel, O. Van Der Biest, and J. Vleugels, “In situ synthesis and densification of submicrometer-grained B 4 C – TiB 2 composites by pulsed electric current sintering,” J. Eur. Ceram. Soc., vol. 31, no. 4, pp. 637–644, 2011.
  • J. Langer, M. J. Hoffmann, and O. Guillon, “Electric field-assisted sintering in comparison with the hot pressing of yttria-stabilized zirconia,” J. Am. Ceram. Soc., vol. 94, no. 1, pp. 24–31, 2011.
  • R. Nicula, K. Ishizaki, M. Stir, Z. Shen, and S. Vaucher, “Rapid synthesis and densification of single-phase Al–Cu–Fe quasicrystals by spark plasma sintering or microwave heating,” Philos. Mag., vol. 91, no. 19–21, pp. 2450–2457, Jul. 2011.
  • S. Grasso, C. Hu, G. Maizza, B. N. Kim, and Y. Sakka, “Effects of pressure application method on transparency of spark plasma sintered alumina,” J. Am. Ceram. Soc., vol. 94, no. 5, pp. 1405–1409, 2011.
  • J. Langer, M. J. Hoffmann, and O. Guillon, “Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: A comparative study,” J. Am. Ceram. Soc., vol. 94, no. 8, pp. 2344–2353, 2011.
  • A. Konschak, R. Schulte, J. Hennicke, H. U. Kessel, and W. Krenkel, “Fast Siliconization of C/C-Preforms via LSI,” in High Temperature Ceramic Materials and Composites, AVISO, 2010, pp. 113–118.
  • S. Huang, K. Vanmeensel, O. Van der Biest, and J. Vleugels, “Pulsed electric current sintering and characterization of ultrafine Al2O3-WC composites,” Mater. Sci. Eng. A, vol. 527, no. 3, pp. 584–589, 2010.
  • J. Vleugels et al., “Pulsed Electric Current Sintering of Electrical Discharge Machinable Ceramics,” Adv. Sci. Technol., vol. 62, pp. 175–184, 2010.
  • S. Ran, O. Van der Biest, and J. Vleugels, “ZrB2–SiC composites prepared by reactive pulsed electric current sintering,” J. Eur. Ceram. Soc., vol. 30, no. 12, pp. 2633–2642, 2010.
  • A. K. Swarnakar, S. G. Huang, O. Van der Biest, and J. Vleugels, “Ultrafine Al2O3-B4C composites consolidated by pulsed electric current sintering,” J. Alloys Compd., vol. 499, no. 2, pp. 200–205, 2010.
  • J. Räthel, M. Herrmann, and W. Beckert, “Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST),” J. Eur. Ceram. Soc., vol. 29, no. 8, pp. 1419–1425, May 2009.
  • R. Nicula, M. Stir, F. Turquier, and E. Burkel, “Single-phase bulk Al–Cu–Fe quasicrystals by field-assisted sintering,” Mater. Sci. Eng. A, vol. 475, no. 1–2, pp. 113–116, Feb. 2008.
  • K. Vanmeensel, B. Neirinck, S. Huang, S. Salehi, O. Van der Biest, and J. Vleugels, “The effect of the electrical properties on the pulsed electric current sintering behavior of ZrO2 based ceramic composites,” Adv. Process. Manuf. Technol. Struct. Multifunct. Mater., vol. 28, no. 7, pp. 67–77, 2008.
  • K. Vanmeensel et al., “Pulsed electric current sintering of electrically conductive ceramics,” J. Mater. Sci., vol. 43, no. 19, pp. 6435–6440, 2008.
  • K. Bonny et al., “Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites,” J. Mater. Process. Technol., vol. 208, no. 1–3, pp. 423–430, 2008.
  • S. G. Huang, K. Vanmeensel, L. Li, O. Van der Biest, and J. Vleugels, “Influence of starting powder on the microstructure of WC-Co hardmetals obtained by spark plasma sintering,” Mater. Sci. Eng. A, vol. 475, no. 1–2, pp. 87–91, 2008.
  • S. G. Huang, K. Vanmeensel, O. Van der Biest, and J. Vleugels, “Binderless WC and WC-VC materials obtained by pulsed electric current sintering,” Int. J. Refract. Met. Hard Mater., vol. 26, no. 1, pp. 41–47, 2008.
  • R. Nicula, V. D. D. Cojocaru, M. Stir, J. Hennicke, and E. Burkel, “High-energy ball-milling synthesis and densification of Fe-Co alloy nanopowders by field-activated sintering (FAST),” J. Alloys Compd., vol. 434–435, no. SPEC. ISS., pp. 362–366, May 2007.
  • Z. Guo, G. Blugan, R. Kirchner, M. Reece, T. Graule, and J. Kuebler, “Microstructure and electrical properties of Si3N4–TiN composites sintered by hot pressing and spark plasma sintering,” Ceram. Int., vol. 33, no. 7, pp. 1223–1229, Sep. 2007.
  • M. Herrmann, J. Räthel, J. Hennicke, M. Nürnberger, S. Heicke, and T. Müller, “Entwicklung langzeitstabiler direkt beheizter Verdampferschiffchen,” in WING Konferenz in Berlin, 22.-24.10.07, 2007.
  • H. U. Kessel and J. Hennicke, “Aspects Concerning the Super-fast Sintering of Powder Metallic and Ceramic Materials,” Interceram, vol. 56, no. 3, pp. 163–166, 2007.
  • K. Vanmeensel et al., “Field Assisted Sintering of Cubic Boron Nitride Dispersed Cemented Carbide (CDCC) Composites,” in EuroPM, 2006, pp. 1–8.
  • H. U. Kessel and J. Hennicke, “Feldaktiviertes Sintern (FAST): ein neues Verfahren zur Herstellung keramischer Nanowerkstoffe,” in FORTSCHRITTSBERICHTE- DEUTSCHEN KERAMISCHEN GESELLSCHAFT; 20, 1, 2006, pp. 170–183.
  • K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van der Biest, “Modelling of the temperature distribution during field assisted sintering,” Acta Mater., vol. 53, no. 16, pp. 4379–4388, Sep. 2005.
  • K. Vanmeensel et al., “Microstructure and Mechanical Properties of Spark Plasma Sintered ZrO2-Al2O3-TiC0.5N0.5 Nanocomposites,” Solid State Phenom., vol. 106, pp. 153–160, 2005.
loading
loading